Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model
نویسندگان
چکیده
Landslide displacement prediction is an essential base of landslide hazard prevention, which often needs to establish accurate model. To achieve accuracy displacement, a model based on salp-swarm-algorithm-optimized temporal convolutional network (SSA-TCN) proposed. The TCN model, consisting causal dilation convolution layer residual block, can flexibly increase the receptive fields and capture global information in deeper layer. SSA solve hyperparameter problem well for Muyubao collected from professional GPS monitoring system implemented 2006 used analyze features slope evaluate performance SSA-TCN cumulative time series decomposed into trend (linear part) periodic (nonlinear by variational modal decomposition (VMD) method. Then, polynomial function predict considering response relationship between rainfall, reservoir water. This research also compares proposed approach results with other popular machine learning deep models. demonstrate that hybrid superior more effective than others at predicting displacement.
منابع مشابه
Displacement prediction of Liangshuijing landslide based on time series additive model
The evolution of landslide displacement is affected by many factors. This paper studied the displacement monitoring data of Liangshuijing Landslide with Factor Analysis Method and found that the dominant factors influencing landslide displacement were in decreasing sequence: cumulative rainfall of anterior two months> rainfall of current month> the average reservoir level of current month>reser...
متن کاملStudy on displacement prediction of landslide based on neural network
In recent years, the economic losses caused by landslides were as high as several billion dollars. Therefore, the study of landslide risk has become a hot topic today. Landslide displacement prediction is a highly nonlinear and extremely complex issue. In most cases, it is difficult to use mathematical models to describe the process clearly. Data mining technology, which uncovers the hidden dat...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14112656